问题提出:
有递推式: $$y_{t} = 0.2 + 0.3y_{t-7}+e\,\,,\,\, e\sim N(0,1),t为正整数$$
有初始化序列:$$[y_{1},y_{2},\cdots,y_{7} ]=[10,20,30,40,50,60,70]$$
根据目标函数生成了100个数据 $$y_{8},y_{9},\cdots,y_{107}$$
A glass of lemonade
有递推式: $$y_{t} = 0.2 + 0.3y_{t-7}+e\,\,,\,\, e\sim N(0,1),t为正整数$$
有初始化序列:$$[y_{1},y_{2},\cdots,y_{7} ]=[10,20,30,40,50,60,70]$$
根据目标函数生成了100个数据 $$y_{8},y_{9},\cdots,y_{107}$$
Vincenzo decides to make cube IV but only has the budget to make a square maze. Its a perfect maze, every room is in the form of a square and there are 4 doors (1 on each side of the room). There is a big number written in the room. A person can only move from one room to another if the number in the next room is larger than the number in his current room by 1. Now, Vincenzo assigns unique numbers to all the rooms (1, 2, 3, …. \(s^{2}\)) and then places \(s^{2}\) people in the maze, 1 in each room where S is the side length of the maze. The person who can move maximum number of times will win. Figure out who will emerge as the winner and the number of rooms he will be able to move.
本篇博文将从一个简单的问题出发,并使用两种方法求解。笔者希望通过写这篇博文融汇一下自己所学的知识、加深直觉上的理解并做分享。笔者非数学科班出身,如有错误之处请斧正。
已知有递推式
其中
求\(\,s_n\,\)的通项公式
——记 2014 阿里巴巴大数据竞赛
最初,从一个机器学习交流群里了解到,今年阿里巴巴举办了 首届大数据竞赛 。那会儿正好要准备结束 kaggle 上的 PAKDD比赛 (ID:lemon),就报名参加了。
以下内容整理自台湾大学林轩田老师的线上课程 -《机器学习基石》
要弄清楚什么这个问题,首先我们得弄明白另一个问题,那就是: 什么是机器学习 ?
举个例子 , 如果某人想去学习英语口语,那么他会怎么做呢? 方法自然不会只有一种,但不管用什么方法,都必须得找到一些学习资料。找到学习资料之后呢? 必须得练习吧,比如大声读度音标,原声模仿文章等。经过一番费劲训练,某人对口语终于有所领悟了。